Dynamic-objective particle swarm optimization for constrained optimization problems
نویسندگان
چکیده
This paper firstly presents a novel constraint-handling technique , called dynamicobjective method (DOM), based on the search mechanism of the particles of particle swarm optimization (PSO). DOM converts the constrained optimization problem into a bi-objective optimization problem, and then enables each particle to dynamically adjust its objectives according to its current position in the search space. Neither Pareto ranking nor user-defined parameters are involved in DOM. Secondly, a new PSO-based algorithm—restricted velocity PSO (RVPSO)—is proposed to specialize in solving constrained optimization problems. The performances of DOM and RVPSO are evaluated on 13 well-known benchmark functions, and comparisons with some other PSO algorithms are carried out. Experimental results show that DOM is remarkably efficient and effective, and RVPSO enhanced with DOM exhibits greater performance. In addition, besides the commonly used measures, we use histogram of the test results to evaluate the performance of the algorithms.
منابع مشابه
Trim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV
Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...
متن کاملA survey of swarm intelligence for dynamic optimization: Algorithms and applications
Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimizat...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملSelf-adaptive velocity particle swarm optimization for solving constrained optimization problems
Particle swarm optimization (PSO) is originally developed as an unconstrained optimization technique, therefore lacks an explicitmechanism for handling constraints.When solving constrained optimization problems (COPs) with PSO, the existing research mainly focuses on how to handle constraints, and the impact of constraints on the inherent search mechanism of PSO has been scarcely explored. Moti...
متن کاملA New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 12 شماره
صفحات -
تاریخ انتشار 2006